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Abstract. We present a method for calculating the energies of bound and quasibound states of
quantum-mechanical problems expressed in terms of coupled-channel equations. The approach
is based on a rational approximation to the logarithmic derivative of the eigenfunction and leads
to a simple quantization condition.

1. Introduction

The Riccati–Pad́e method is an efficient approach for calculating eigenvalues and
eigenfunctions of the Schrödinger equation [1–3]. The procedure consists of an appropriate
representation of the logarithmic derivative of the eigenfunction by means of a rational
function or Pad́e approximant. The main advantages of the method are its simplicity, its
formidable rate of convergence, and the appealing fact that the boundary conditions do not
appear explicitly in its formulation. This latter feature makes the method equally suitable
for the treatment of bound states and resonances (quasibound states), both given by the
same quantization condition as roots of Hankel determinants [4–6]. Although the precise
conditions under which the method applies have not been rigorously determined, extensive
applications suggest that the method is of quite general validity [1–6].

Up until now, the Riccati–Padé method has been applied to separable problems, i.e.
to a single differential equation. In this work we show how to apply this approach
to coupled-channel equations which commonly arise from the treatment of nonseparable
physical systems. Because the problem of convergence of the coupled-channel expansion is
alien to the Riccati–Padé method, we concentrate on simple models with only two equations.
The extension to systems with more channels is straightforward in principle.

2. An overview of the Riccati–Pad́e method

We first present the method in its simplest form by means of its application to the second-
order differential equation

− Y ′′(x)+Q(x)Y (x) = 0 (1)

where the primes stand for differentiation with respect tox, andQ(x) may depend on an
unknown parameter (for example, the quantum-mechanical energy).
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If Y (x) ∼ xs at the origin, then

f (x) = s

x
− Y

′(x)
Y (x)

(2)

is analytic at that point and can be expanded in a Taylor series:

f (x) =
∞∑
j=0

fjx
j . (3)

In addition to this, the functionf (x) satisfies the Riccati equation

f ′(x)+ 2s

x
f (x)− f (x)2+Q(x)− s(s − 1)

x2
= 0. (4)

On account of the very definition off (x) one expects that a rational approximation would
be a better representation of this function than the Taylor series, equation (3). Moreover,
we choose the unknown parameter in such a way that the rational approximation yields one
more coefficient than an ordinary Padé approximant:

[N + d/N ](x) =
∑N+d
j=0 ajx

j∑N
j=0 bjx

j
=

2N+d∑
j=0

fjx
j

︸ ︷︷ ︸
Padé

+f2N+d+1x
2N+d+1

︸ ︷︷ ︸
present approach

+O(x2N+d+2) (5)

where [N/M] represents a Padé approximant of degreesN and M in numerator and
denominator, respectively. The additional requirement is not satisfied unless

Hd
D =

∣∣∣∣∣∣∣
fd+1 fd+2 . . . fD+d
fd+2 fd+3 . . . fD+d+1

. . . . . . . . . . . .

fD+d fD+d+1 . . . f2D+d−1

∣∣∣∣∣∣∣ = 0 (6)

whereD = N + 1 is the dimension of the Hankel determinantHd
D. In the case of a

quantum-mechanical problem the coefficientsfj are polynomial functions of the energy,
and equation (6) plays the role of a quantization condition from which one obtains the
energies of bound and quasibound states for sufficiently large values ofD. In other words,
the problem reduces to obtaining the real (bound states) and complex (quasibound states)
roots of sequences of polynomials, generating convergent sequences for increasing values
of the polynomial degree. Details of the calculation are given elsewhere [1–6].

It is worth mentioning that there are other systematic ways of obtaining solutions to the
Riccati equation (4) that may also prove to be useful in obtaining eigenvalues. For example,
continued fractions have been widely studied [7]. Here we choose the remarkably simple
rational approximation outlined above.

In the case whereY (x) has a definite parity (i.e. it is even or odd) one proceeds exactly
in the way just indicated, except that

f (x) = x
∞∑
j=0

fjx
2j . (7)

As the appropriate variable isx2 instead ofx itself, the rational approximation turns out to
be x[N + d/N ](x2). Afterwards the calculation proceeds exactly as indicated above.

It is worth mentioning that the quantization condition equation (6) also follows from an
appropriate truncation of either the numerator or denominator of the Padé determinant. For
example,bN = 0 leads toHd+1

N = 0, anda2N+d+1 = 0 leads toHd
N+1 = 0.



The Riccati–Pad´e method for coupled-channel equations 5827

3. The Ricatti–Pad́e method for two coupled-channel equations

Throughout this paper we consider two coupled-channel equations of the form

(
L11 L12

L21 L22

)(
A(x)

B(x)

)
=
(

0
0

)
(8)

where

L11 = − d2

dx2
+Q11(x)

L22 = − d2

dx2
+Q22(x)

L12 = L21 = Q12(x).

(9)

The functionsQjj (x) in the diagonal elements of the matrix operator depend on the energy
E. The treatment of more than two equations should be a straightforward extension of the
algorithm for the present simple case.

For the kind of problems considered here, the regular solutions of equation (8) behave
near the origin asA(x) ∼ A0x

s and B(x) ∼ B0x
s ′ , where the values ofs, s ′ > 0 are

determined by the indicial equations. We assume thatA0, B0 andE are the only unknowns
when we expandA(x) andB(x) in a Taylor series aboutx = 0. In other words, by virtue
of equation (8), all the coefficients of such series depend only on the three parameters
indicated. We are allowed to arbitrarily choose eitherA0 = 1 or B0 = 1 so that just two
undetermined parameters remain.

Before proceeding with the description of the method it is worth mentioning possible
transformations of equation (8) by means of 2× 2 unitary matricesU independent of the
coordinatex:

U
(
L11 L12

L21 L22

)
U−1 =

(
L̃11 L̃12

L̃21 L̃22

)
. (10)

A straightforward application of the rational representation outlined above to each of
the logarithmic derivatives

f (x) = s

x
− A

′(x)
A(x)

g(x) = s ′

x
− B

′(x)
B(x)

(11)

leads to two equations like equation (6) that completely determine the energyE and either
A0 or B0 (whichever is assumed to be unknown). Finally, one has to solve two nonlinear
coupled equations with two unknowns.

The required coefficientsfj and gj of the Taylor expansions off (x) and g(x),
respectively, are related to the coefficientsAj and Bj of the corresponding expansions
of A(x) andB(x) through equation (11).
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4. Applications

4.1. Coupled harmonic oscillators

First, we consider two displaced harmonic oscillators coupled by a linear interaction

Q11(x) = x2+ ε1− E
Q22(x) = x2+ ε2− E
Q12(x) = λx

(12)

where ε1 and ε2 are energy shifts, andλ determines the strength of the coupling. This
simple problem is a schematic representation of the nuclear-electronic coupling of diatomic
molecules, which is used to explain fluorescence phenomena in diatomic molecules (see,
e.g. [8])

Written in a different way, this model proved itself useful to be suitable for testing the
applicability of the generator coordinate approximation for the description of the nuclear-
electronic coupling in diatomic molecules [9]. In fact, through the orthogonal transformation
given by

U = 1√
2

(
1 1
1 −1

)
(13)

we obtain

L̃11 = − d2

dx2
+ x2+ λx + ε1+ ε2

2
− E

L̃12 = ε1− ε2

2

L̃22 = − d2

dx2
+ x2− λx + ε1+ ε2

2
− E

(14)

which is essentially the model considered in [9].
The solutionsA(x) andB(x) of the untransformed equations have definite but opposite

parity: if A(x) is even (odd) thenB(x) is odd (even). The unperturbed problem
(λ = 0) exhibits degenerate states when the difference of energy shifts is an even integer,
ε2−ε1 = 0, 2, 4, . . .. In particular whenε1 = ε2, and the equations given by the transformed
operator equation (14) are uncoupled.

We have considered the nondegenerate case, withε1 = 1 andε2 = 2. Determinants of
dimensionD 6 5 are sufficient to obtain the first four allowed values of the energy with
10 exact digits for all 0< λ < 1. Such results, shown in figure 1, have been confirmed by
accurate numerical integration of the coupled equations.

4.2. A Coulomb-like problem

The model just discussed only supports bound states. A more interesting and richer example
is provided by a Coulomb potential in either a channel or linear coupling:

Q11(x) = 2(ε1− E − 1/x)

Q12(x) = 2λx

Q22(x) = 2(ε2− E − 1/x) x ∈ [0,∞]

(15)

which approximately reproduces some of the relevant features of the Stark effect in
hydrogen.
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Figure 1. Eigenvalues of the harmonic oscillator with linear coupling.

In the particular caseε1 = ε2 the system equation (8) is separable into two independent
one-dimensional equations by means of transformation (10) with the orthogonal matrix
equation (13). One of the equations supports only bound states, whereas the other exhibits
no bound state but resonances embedded in the continuum:

L̃11 = − d2

dx2
+ 2

(
λx − 1

x
− E

)
L̃12 = 0

L̃22 = − d2

dx2
− 2

(
1

x
+ λx + E

)
.

(16)

We apply the Riccati–Padé method to the separate and nonseparate forms of this model
whenε1 = ε2 = 0. We already know that the approach gives accurate results in the former
case [5], and by comparison we test the present generalized version for coupled-channel
equations.

Figure 2 shows the rate of convergence of the sequences of roots for the first real
(bound state) and complex (quasibound state) eigenvalues obtained from determinants with
shift d = 0 (settingd = 1 leads to a slight improvement). These results for thenonseparate
form of the model suggest that the Riccati–Padé method may be of practical utility for the
calculation of bound states and resonances in coupled-channel equations. The expression
significant figuresin figure 2 means that the error is of at most two units in the last digit.

4.3. Zeeman effect in hydrogen

The next example is a hydrogen atom in a strong magnetic field along theZ-axis. The
diamagnetic part of the Hamiltonian operator in atomic units reads

H = −1

2
∇2− 1

r
+ λ(x2+ y2) r2 = x2+ y2+ z2 (17)

whereλ is proportional to the square of the magnetic-field strength. The eigenstates of
the Hamiltonian equation (17) may be characterized by the magnetic quantum numberm,
becauseH commutes with the third componentLz of the angular momentum operator. On
the other hand,H does not commute withL2, and l is not a good quantum number. This
problem has been the subject of intensive research since the first detection of quadratic
effects in the measurements of Jenkins and Segrè [10] and their interpretation by Schiff and
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Figure 2. Rate of convergence of two eigenvalues supported by the Coulomb-like potential with
linear coupling.

Snyder [11] by means of second-order perturbation theory. Moreover, large-field effects are
of astrophysical interest [12]. A review on the Zeeman effect in hydrogen may be found in
[13].

To obtain the solution of equation (17) we expand the eigenfunction9 in terms of the
spherical harmonicsYml (θ, φ) (m fixed)

9(r, θ, φ) = 1

r

∞∑
l=|m|

8l(r)Y
m
l (θ, φ) (18)

giving rise to the coupled equations[
−1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
+ λC(l, l, m)r2− E

]
8l + λC(l, l − 2, m)r28l−2

+λC(l, l + 2, m)r28l+2 = 0 (19)

where the matrix elementsC(l, l′, m) = 〈Yml | sin(θ)2|Yml′ 〉 are easily obtained in terms of
Clebsch–Gordan coefficients. Here we restrict ourselves to states withm = 0.

In order to test the performance of the Riccati–Padé method on this problem we have
compared the eigenvalues produced by this method with numerical integration of the same
set of coupled equations.
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Figure 3. Rate of convergence for the ground state of the diagonal equation withl = 0 of the
Zeeman effect in hydrogen.

The Riccati–Pad́e method converges rapidly for the diagonal equations (obtained by
entirely neglecting the couplings), as shown in figure 3 forl = 0 and two values ofλ.
These results suggest that the present approach correctly takes into account the singularity
of the potential-energy function at infinity (due to the termr2 > x2+ y2).

As a test example for the case of coupled equations we consider only the first two
equations form = 0:[
−1

2

d2

dr2
− 1

r
+ λC(0, 0, 0)r2− E

]
80+ λC(0, 2, 0)r282 = 0[

−1

2

d2

dr2
+ 3

r2
− 1

r
+ λC(2, 2, 0)r2− E

]
82+ λC(2, 0, 0)r280 = 0

(20)

whereC(0, 0, 0) = 2
3, C(0, 2, 0) = C(2, 0, 0) = −2

√
5/15, andC(2, 2, 0) = 10

21.
Table 1 shows results for the ground state obtained by applying the Riccati–Padé method

to one (l = 0) and two equations, and the corresponding values determined numerically.
For completeness, this table also includes the numerical integration of 10 coupled equations
and an accurate variational approach [14, 15]. For the values ofλ considered in table 1,
the two-channel approach is acceptable (although the contribution of higherl channels is
nonnegligible) and the Riccati–Padé method yields satisfactory results suggesting that the
method may be of practical utility.

4.4. A system with no bound states

The last example, given by the functions

Q11(x) = −2(x2e−x + E − ε1)

Q12(x) = −15x2e−x

Q22(x) = 15x2e−x + 2(E − ε2)

ε1 = 0

ε2 = 0.1

(21)

does not support bound states. Unlike the cases studied above, here the coupling potentials
are transcendental functions of the coordinate.
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Table 1. Energy of the lowest state withm = 0 for the Zeeman effect in hydrogen.

Method λ = 0.045 λ = 0.125

One equation −0.425 409 9762−0.323 840 2978
RPM

One equation −0.425 409 98 −0.323 840 3
numeric

Two equations −0.427 429 9 −0.330 92
RPM

Two equations −0.427 429 88 −0.330 920 2
numeric

Ten equations −0.427 462 23 −0.331 168 9
numeric

Variational [14, 15] −0.427 462 29 −0.331 168 9

This model has been used to test new approaches for the calculation of resonance
energies and widths [16, 17]. In this case the Riccati–Padé method converges less rapidly
than in the previous examples. From determinants of orderD = 12 (with d = 0 andd = 1)
we obtainE = ER + i0/2 = 4.7681− 0.0007i in agreement with previous calculations
[16, 17].

5. Summary

The results shown throughout this paper suggest that the Riccati–Padé method applies to
coupled-channel equations. The relevant features of the method are: simplicity, the same
straightforward quantization condition for both bound and quasibound states, and in many
cases a remarkable rate of convergence. However, it remains to be proved that the approach
is practical for the treatment of many coupled-channel equations as one encounters in typical
physical problems. The calculation of the appropriate root of a given system of Hankel
determinants appears to be the most difficult task because of satellite roots that increase in
number asD increases.
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[5] Ferńandez F M 1995Phys. Lett.A 203–75
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